'§
i
;
{
i
!
;
|

CENTER FOR
CYBERNETIC

STUDIES

1

The University of Texas
Austin,Texas 78712 ;

:

3

!

)

j

|

This document has been approved?iz

for public roleqse_ar}d sale; 1i3
distribution is unlimited.

-




*United States Air Force School of Aerospace Medicine, Brooks Air Force Base

This research was supported in part by Texas A&M Research Foundation
Subcontract L100018 with the Center for Cybernetic Studies, The University

- of Texas. Reproduction In whole or in part is permitted for any purpose

Research Report CCS 400

PRELIMINARY REPORT 1 ON RAPID RESPONSE
ALGORITHMS FOR OPTIMIZING THE UTILIZATION
OF HUMAN RESOURCES IN FLIGHT CREWS:
SCHEDULING AIRCREWS TO AIRCRAFTS

Y by

" R. Armstrong
A. Charnes
M. Kress

S. Samn¥*

July 1981

of the U.S. Government.

CENTER FOR CYBERNETIC STUDIES

A. Charnes, Director
Business-Economics Building 203E
The University of Texas at Austin

Austin, Texas 78712
(512) 471~-1821

T e

'%
|
§
j
_DTIC |
T ELECTE !
JANG 10824

G A g

—
This document has been ap:j
for public xolease.or‘xd sale; if
distribution is unlimited.

RN A e i P




R

T

S R R

T :“E""’*’?'J’!*wa; AT

B IS—— S
B Sias g

1. THE PROBLEM

hY

- e Consider an airlift operation which consists of several routes,

each having missions which are subject to given time schedules. The dis-

tinction between a mission and a route is that the latter is apurely physical
entity, whereas a mission is a route with the associated attributes of air-

craft and starting time. Consider the situation in which th7’scheduling
/the same location

period (cyule) for euch mission commences and terminates at;

which is called "home base.'" It is further assumed that within the _
/ U !

/
scheduling cycle each aircraft completes exactly ome qiésion.

- .~ The aircraft are manned with aircrews that are required to rest 5
:

for a certain period of time after each leg of a mission. A mission may

ki

be continued whenever a rested aircrew is available at the location. Given ‘

the number of missions that are needed to be flown on the different routes,

and given the schedule timetable that is associated w 'th those missions,

we consider the problems:

¥hat is the minimum number of crews that are needed to maintain

= DL k. o o TR s

(1)
the operation?
(2) How many aircrews are needed to be staged at each location? ;
(3) 1I1f the number of available aircrews is less than the minimum g
i

needed, which legs of what missions may be delayed so that the

\

minimum required number of aircrews is reduced? C“c>\\$‘ / é

)

!

l/Actually, a single aircraft may be scheduled to complete more than one . E% 1

mission.

mission, but we shall consider it here as a single, multiple loop route,
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-> We will exclude from the analysis the trivial case where the rest

E ‘ period of the aircrews is always less than the period of time fcr which

the aircrafts are delayed.
If this is the case, then it is clear that the minimurm number of

aircrews is equal to the number of missions and all the aircrews must be

staged initially at the home base.
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2. TIME EXPANDED NETWORK- \

It is assumed that all changes in the system take place at integer

| multiples of a basic time uni which will be taken as 1 for simplicity.

Thus, the scheduling cycle is ° cretized so that the system is fully de-

>
R LR aeddd. i

scribed by its states at time 0, ., 2, +.. .

Suppose the aircraft operation covers L locations Bz. £ =1...L

and is scheduled over a cycle of T time periods. Since the number and the
schedule of all missions are given, the aircrews' scheduling problem is
3 ¢ fully determined by the departure times of the legs of the missions and by

the availability of aircvews in the various locations at the different time

periods. A time~expanded network that depicts the aircrews' scheduling

-
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problem may be constructed as follows:

"Aircraw" network

The following gives a description of the network which depicts the
travel of crews throughout the airlift.

Nodes

A node Bl(j) represents location Bz. £ =1,,,L at time period §,

j - IQQOT.
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Arcs

Two types of arcs are defined in this network; inter-location ares
and intra-location arcs. An inter-location arc has the form (Bk(i), Bz(j\),
i+ <3, k¥ 2%, vhere r i8 the rest period for an aircrew. This arc
indicates the existence of at least one aircraft that is scheduled to leave
Bk at time peirod i and arrive at Bl at time period j - r.

Each aircrew that had flown an aircraft on this leg is available for
another flight from location Bz at time period j. (Note that there is a
one-to-one correspondence between an “aircrew" arc defined above and an
"aircraft" arc that simply defines the departure and arrival times of a leg.)
An intra-location arc is of the form (Bz(i), Bz(j)). 1t <3, &=1,..L,

An arc of this type repreaepts available aircrews that are delayed

(after finishing their rest peirod) from time period i to time period 3 at
location Bz. For each inter-location are, (Bk(i). Bz(j)). we assoclate a
nunber Ckl(ij) which is equal to the number of aircrafts scheduled to depart

from Bk at time period 1 and arrive to Bm at time period j - r.

Example

Suppose the airlift operation consists of two routes, four locations,
and nine time periods. Therc¢ is one mission defined for each route. The

following table details the two missions along with their time table.
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The "Aircraft" network that depicts the above operation in terms of the missions'

flight legs alone is given in Figure 1.

Figure 1
Time
1 2 3 4 5 6 7 8 9 10
A A A A A A A/ﬁ A
rd
4
”
j \ B/BW /"B’ P ’
C 1\ ¢C 7. - T Si.c ¢ c ¢
\ - -
D Y_--D D D D D D D D
route 1
--------- route 2

Next, we need to adjust the above network to account for crews' rest time.
Suppose the rest period after each leg is one time period; then the adjusted

"Aircrew" network defined above has the following form:

L TV RS N SN % P = T

e R I 55 AR

I i e i ket

.
2ot SRt b S . S AP

e

o b B 2




o RTINS 553 e ey 1 S
T AR WY o ST D05, DT sz raigr gy pre.
T A R TRV s L™ T ey

Figure 2

F
W
(=]
~3
©o
L'-4

EVET e i o

-

s T R,
-

X AT e

The airlift operation is cyclic in the scheduling horizons; therefore, the

number of aircrews left in any location at the end of one scheduling cycle

i

o = ol

must be equal to the number needed in the same location at the beginning of

the next scheduling cycle.

The problem is to find a minimum flow on the circulation network

SR T,

R T

defined by the "Aircrew” network (Figure 2) with the additional arcs

; : (BQ(T). Bz(l)) £ =1, . .L, See Figure 3, below.
o
: Figure 3
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In linear programming formulation the crew minimizat¥on problem may

be stated as:
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L
Mininize 9, £(8%(T), BY(1))
Lm]
B.t.
T L T L
L X et Bran - 2 st B5@w) = o
j=1 %=l Jml gl
{i=1,...,T
k=1,...,L
()

gy < s*@w L Bha) < M
£, YN >0 31, Lmd,...L
' where £(8%(1), BY(4)) 1s the flow on ave (85(1), BY(1))
Problem (1) may be solved by an appropriate network algorithm; however,
the special structure of the model can be exploited to obtain a simpler and
more efficient solution procedure.

In addition, through this procedure one can identify the system's
bottlenecks. This will yield insights into where and when to delay an
aircraft such that the delay will reduce aircrew requirements and have a
minimal effect on the airlift schedule.

The details of this procedure are given in the next section.

3. THE PROCEDURE FOR DETERMINING THE MINIMUM NUMBER OF CREWS AND THEIR
ALLOCATION

The basic idea of the following procedure is similar to the one

proposed by Bartlett { 1] in an algorithm for determining the minimum

number of transport units to maintain a fixed schedule cyclic in time.

Define

(3.1 B

"

B4, B%2),...,B¥ M) 2=1,...,L
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to be the set of all nodes in the adjusted "Aircrews'" network that corres-

: ponds to location Bz. We divide the set of interlocation arcs into two

sets; outgoing arcs and incoming ares. An outgoing arc of B” is an arc that

is rooted in one of the nodes in E& and is connected to a node in §k. for

R

k # 2, i.e. an arc of the form (Bz(j), Bk(i)). i > j+r. An incoming are of

¢ . 3% is an arc that is rooted in some node in Ek, k # %, and its end point is

in'fﬁ, i.e. an arc of the form (Bk(i), Bn(j)). (See Figure 4)

L

? Figure 4
] incoming
g';
8
{ B4 (1)— BY(2)— Y1) B4 (4)
§ outgoing 1
! 5 :
3 i " 1
’ % ;
2 : For each node B7(j) we assoclate a number which is equal to the excess of 1
é i outgoing flow over incoming flow. In other words, the difference between ;
2 5
2 ‘ the total number of flights scheduled to depart from Bz at time period jJ |
ﬁ and total number of flights scheduled to arrive to Bl at time period j - r. L
3 d
Namely 3
(3.2) i
£ [ p
5 = )IRED DR TR DD DR :
k2 1>34r kL i<j-r g
)
4

We now define A§ as the cumulative difference between the outgoing and i
p
incoming flow at Bz(j).
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(3.3) oy = Z &
1=1

and Az as the maxirm cumulative difference at location Bl.

(3.4) A amax
4=1...7 3
Property 1
For all locations Bz
T
3.5)
( z 6§ -0 E-I'OOO’L
j-
L
(3.6) A _>_0 2’ o 1.0.-,L

Proof
Within a scheduling cycle all routes (missions) start and terminate

in the same location (home-base), therefore the number of incoming flights

in each location must be equal to the number of outgoing flights. From

(3.3) and (3.5) it follows that
L
(307) AT-O RI- lgago.L

Therefore

L
(3‘8) A - j.lwo pT j

QED
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Property 2

Az is equal to the minimum number of aircrews that are needed to be

SR T ey

LR TR IR

available in location Bz at the beginning of the scheduling cycle.

Proof

AT o Lo L

Suppose Az = A = M

[N
o

That is, the maximum excess of departures over arrivlas 1s obtained in the

gl
b
3 jz-th time period and is equal to m. In other words, by time pericd jz, m
4
@ flights scheduled to leave Bl will not have crews unless m aircrews are staged
gi at location B,
L ;
@ If we consider the m crews that are staged initially at Bz as m 1
é arrivals at time period 1 = 1, then from (3.3) and (3.4) it follows that for i
5  each time period j the difference between departures and arrivlas is non- ?
é positive, which implies that the schedule is flexible.
N : QED 1
4 | .
k .
4 : Property 3
% The minimum total number of adircrews need=< to maintin the ]
) schedule is L
(3.9) M - z | 2
=1 §
§
Proof l
Follows directly from Property 2 :
QED ;
)

As we have already seen in Section 2, the cyclic nature of the

airlift operation problem dictates additional constraints on the system;

i
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10.
; that is, the number of aircrews left at any location at the end of a
; scheduling cycle should match the number needed at that location at the
g beginning of the next cycle, The next property shows that this requirement
g, 1s satisfied by the procedure.
b
% i Property 4
%‘ ; Let Bz(ki) be the last (in terms of time periods) rode of §Z such
4 ! )
g that it is an end point of an interlocation arc (a node of either incoming
! .
% ; or outgoing arcs). For a feasible schedule,
| (3.10) £ A, BUk, + 1)= A"
X
; ! Proof
L CASE 1: M am=o "7
f o No crews are staged at location Bz at the beginning of the ascheduling §
e : 1
3 ? cycle. But, from Property 1 ?
; (3.11) g =0 ;
2 : 2
! Therefore
£ (B*x,), Ak, + 1))= 0 g
Al % ]
2 i
CASE 2: A" mm>0
According to Property 2, at least m aircrews must be staged at ;
Bz at the beginning of the scheduling cycle. Consider an augmanted network %
% {
with m arrivals at time 1. The new A; for the augmented network satisfied %
]
] !
(3.12) A"'R'-.A2 -m J = 1,.0.,T 4
375 i
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In particular
L 2

Ak -m

(3.13) Aﬂg
)

But since Aﬁ = 0 (Property 1), it follows that
2

(3.14) A;{”‘ - -m
%

which means that at the last nede with either incoming or outgoing arc the
cumulaiive difference between the flow in incoming ares and outgoing arcs

is positive (= m).
To satisfy the network balance equations we must have
(3.15)  £(8(ky), B'(k, + 1) »m
QED

Corpllary 1
ihe flow on (BQ(T), 32(1)) is equal to Ag.

Aircraft Delays

There are some tradeoffs in this model between the minimum number
of aircrews needed and the delay structure of the aircrafts' mission.

Delaying aircrafts at some locations or stretching the scheduling
cycle horizon may yield a reduction in the number of aircrews. It is,

however, possible for aircraft delays to increase the number of crews

required. For example, conaider the airlift operation which corresponds g

to the aircrew network in Figure 2. The Al's are: 4

BMaz, ey, t8a1, a1

and M-AA+AB+AC+AD-5 4

3

3

‘ 2'

. .
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5 Delaying the aircraft in route 1 from B(3) to B(4) yields the
'i following aircrew network:
F
é; ' 1 2 3 4 5 6 7 8 9 10

v

Here,

M mg, ABag, 28,0
and
M=6

Hence, delaying an aircraft resulted in a larger number of aircrews.

Next it is shown that for certain locations and time periods it is
impossible to reduce the number of aircrews no matter how long the aircrafts

are delayed. The following definitions are needed.

(3.16) 3% = Max 13 A§ - %)
and
(3.17) } = Max 3%
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Property 5
No matter how long an aircraft is delayed in Bz(j). L 0= 1,...,L,

j >3+ 1, no reduction in the minimum number of aircrews can be achieved.
Proof

Delaying one aircraft at location/time period Bz(j) is equivalent
to reducing 6§ by one unit, But doing this for time periods which are
past jq,' £ =1,...,L means that Az is not changed for all & = 1,,..,L,

and according to Property 2, no reduction in the number of aircrews needed

can occur.
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